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Magnetohydrodynamic free convection 

By N .  RILEY 
Department of Mathematics, Durham University 

(Received 23 September 1963) 

The flow of an electrically conducting fluid up a hot vertical plate in the presence 
of a strong magnetic field normal to the plate is considered. A solution is developed 
based on the idea of matching ‘outer’ and ‘inner’ solutions in the moving layer 
of fluid. A n  approximate Pohlhausen method of solution is also given which 
yields results in fairly good agreement with the exact analysis. 

1. Introduction 
Several recent authors, Geshuni & Zhukovitski (1958), Lykoudis (196q, 

Gupta (1960,1962), Sparrow & Cess (1961) and Singh & Cowling (1963a, b) ,  have 
considered the problem of free convection of an electrically conducting fluid in 
the presence of a magnetic field. Of these papers the latter two contain perhaps 
the most penetrating analysis of the general flow properties in such a physical 
situation. In  the first of their papers Singh & Cowling discuss the two-dimensional 
flow of a fluid of small kinetic viscosity v up a hot vertical plate normal to which 
a uniform magnetic field is applied. In  the second the flow in a closed rectangular 
box, whose vertical walls are normal to the field and maintained at  different 
temperatures, is examined. The present work is an extension of the first of these 
papers. 

In  their paper Singh & Cowling show that, regardless of the strength of the 
applied magnetic field, there will always be a region in the neighbourhood of the 
leading edge of the plate where forces of electromagnetic origin are not important, 
whilst at large distances from the leading edge these magnetic forces dominate. 
In  each of these regions they give a similarity solution of the equations of motion. 
For the flow sufficiently near the leading edge the solution is the well known 
non-magnetic free-convection solution; Sparrow & Cess ( 1961) take this solution 
as the first term in a series expansion about the leading edge. Singh & Cowling 
also develop an approximate Pohlhausen method of solution based on an inte- 
grated form of the equations of motion and from this recover the main features 
of their similarity solutions. Although in their work they are mainly concerned 
with the case where the wall temperature and temperature of the ambient 
fluid are constant, they also discuss the principle features of the flow induced 
by other temperature conditions. 

In  the present paper we consider the flow up a vertical plate maintained at  a 
constant temperature greater than the constant temperature of the surrounding 
fluid in the presence of a strong magnetic field normal to the plate. Of the two 
parameters associated with the electromagnetic features of the flow we assume 
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that the Hartmann number M ( = (a/pov)*HoL where u is the conductivity, 
po the density and v the kinematic viscosity of the fluid, Ho the magnitude of the 
applied magnetic field and L a typical length, say the length of the plate) is 
much greater than unity, and that the magnetic Reynolds number RM ( =  4 7 7 ~ ~  
where K is the thermal diffusivity) is much less than unity. Consequently (i) the 
electromagnetic forces are important everywhere except in the immediate 
neighbourhood of the leading edge of the plate, and (ii) perturbations to the 
basic normal field may be ignored. 

The starting-point of the analysis is the similarity solution given by Singh 
& Cowling. This solution, which is based on the assumption that the viscous and 
inertia forces may be neglected in comparison with the buoyancy and magnetic 
forces, ignores the presence of a very thin layer of fluid adjacent to the wall in 
which viscous forces are important, and consequently the no-slip condition at  
the wall is violated. Thus, although the dominant terms in the volume flow of 
fluid up the plate and the heat transfer across the wall are given by this solution 
no estimate of the skin friction can be made. The introduction of an inner bound- 
ary layer which enables the no-slip condition a t  the wall to be satisfied and 
matches with the similarity solution remedies this deficiency. The thickness of 
this inner boundary layer is shown to be O(M-l) and in this respect is similar to 
the boundary layers to be found, when 1M is large, on the walls in Hartmann 
flow, and on the walls normal to the applied field in the flow down tubes of rect- 
angular cross-section considered by Shercliff (1 953). The similarity solution 
together with the above solution in the inner boundary layer forms the basis 
for extending the solution by introducing a series of ‘outer’ and ‘inner’ solutions 
between which a matching procedure is effected. At the third stage in the outer 
solution a difficulty arises necessitating the introduction of logarithmic terms. 
Also at  this stage an indeterminacy arises manifesting itself as a shift of origin; 
this may be attributed to the fact that our solution does not hold at  the leading 
edge of the plate and so does not satisfy the boundary conditions imposed there 
and in this sense the solution may only be regarded as asymptotic. The solution 
is not continued beyond this stage. The first three terms of the series for the 
volume flow of fluid up the plate and the skin friction together with the first 
two terms for the heat transfer across the plate are deduced from the solution. 

In  the approximate solution which they give using a Pohlhausen method Singh 
& Cowling choose temperature and velocity profiles which approximate closely 
to their similarity solution. Thus, again, the inner boundary layer is ignored and 
the viscous term dropped from the integrated form of the equations of motion. 
The approximate solution then predicts only those features of the flow given by 
the similarity solution. In  the present work a Pohlhausen solution is given based 
on a velocity profile which takes account of the inner boundary layer of thickness 
O(M-l). All the terms in the integrated form of the momentum equation are 
retained and the main features of the solution described above are recovered. 
The accuracy of the results compares favourably with the exact analysis. 

It is assumed throughout that the fluid is non-magnetic so that its perme- 
ability is unity. 
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2. Equations of motion 
For the derivation of the equations of motion for the problem under con- 

sideration the reader is referred to the paper by Singh & Cowling (1963a). 
In dimensionless form the momentum and energy equations take the forms 

with boundary conditions 

and 

The boundary conditions on the dimensionless temperature 0, defined as 
0 = (T - To)/(Tl - To) where T is the temperature, are based on the assumption 
that the wall and ambient fluid are maintained at constant temperatures TI 
and To respectively (TI > To). To complete the specification of the problem we 
require that 

these conditions being necessary since the governing equations are parabolic. 
A representative length L and velocity K / L  together with the temperature 
(TI - To) are used in rendering these equations dimensionless The dimensionless 
velocities along and normal to the wall are related to the stream function $ by 

e = a$/ay = o at x = 0, y > 0, (4) 

a+ 
aY ’ ax 3 

v = -- u = -  a$ 

respectively, where x and y are measured along and perpendicular to the plate. 
(In this respect the notation differs from that used by Singh & Cowling who 
measure y along the plate.) The Prandtl number h = v/K; the parameters 
A ,  and M ,  are respectively the modified Grashof and Hartmann numbers. Thus 
the ordinary Grashof number ( = a,,g(T, - To) L3/v2 where a0 is the coefficient 
of expansion and g the acceleration due to gravity) and Hartmann number 
are h-2A, and h-tM,. It may be noted that in formulating the equations of 
motion the Boussinesq approximation, where variations of density are taken 
account of only in the buoyancy term of the momentum equation, has been 
employed. We also define B = A,M;2. Perturbations to the basic magnetic field 
which is normal to the plate are O(R,,) and are ignored. The electric field E is 
assumed to be zero. 

In  the present work the quantities h and A ,  are assumed to be O(1) but M 
(and consequently M,) are assumed large, consistent with an applied field of very 
great strength; consequently B < 1.  Under these conditions the magnetic drag 
force tending to oppose motion across the lines of force is of the same order of 
magnitude as the buoyancy force, and dominates the inertia and viscous forces 
everywhere except (i) in a very narrow viscous sublayer where viscous forces 
must be important, and (ii) in the immediate neighbourhood of the leading edge 
of the plate. Singh & Cowling show that in the latter region the flow approxi- 
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mates to t,hat in the absence of a magnetic field. Sparrow & Cess (1961) have 
obtained a series solution, valid in this region, by expanding about the basic 
non-magnetic solution; it will not be discussed further here. 

For the region in which magnetic drag dominates Singh & Cowling obtain a 
similarity solution as follows. Write 

} ( 5 )  
@ = B'x'F0(7)7 

8 = O o ( q ) ,  where q = B*y/x*, 

and then it follows from (1) that B0 = FA, and from ( 2 )  that 

Fij' + +Fo Fg = 0, (6) 

where the primes denote differentiation with respect to q. Since the order of 
the governing equations has been reduced by two not all of the boundary con- 
ditions (3) can be satisfied so the no-slip condition and the condition at infinity 
on @ are abandoned. The other three conditions give 

Fo(0) = F~(co)  = 0, FA(0) = 1. ( 7 )  

Singh & Cowling have integrated (6) numerically under the boundary conditions 
(7) (although it may be noted that the solution is readily derived from tables 
published in connexion with the problem of the mixing of a non-conducting 
fluid at  rest with a moving stream of the same fluid, see e.g. Christian 1961). 
Their principle results may be summarized as 

I PO(a)  = 1.616, 

! F:(O) = 7 = -0.4437, 

andforsniallq, Fo(q) = q+-------- Y? Y T 4  Y275+O(qa). 
2 !  2 4 !  2 5 !  

Although this solution gives the dominant term in both the volume flow up the 
plate and the heat transfer across the plate, it  may be criticized on the grounds 
that the no-slip condition has been violated. The purpose of the present paper 
is to show how an inner boundary layer may be introduced to reduce the fluid 
velocity at the wall to rest enabling the solution, the leading term of which is 
given above, to be developed further. 

3. Solution of equations 
It is more convenient here to work in terms of the variable 

< = x/B, (9) 
in terms of which equations ( 1 )  and (2) become 

(11) 

The method of solution adopted is that of matching solutions which are valid 
in an inner viscous layer to appropriate outer solutions of which the first has been 
given by Singh & Cowling. To establish the form of the equations appropriate to 
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the inner layer we note that in this layer the viscous forces are of the same order 
of magnitude as the buoyancy and magnetic forces, and that 8 = O(l) ,  
a$/ay = O(B) in order that the inner solution will match with the solution given 
by Singh & Cowling. These considerations lead to the following transformation 
(where now ‘inner’ variables are denoted by a bar) 

Hence, from (lo),  (11) and (12), the form of the equations which we shall use in 
the inner laver are 

and as g -+ 00 the solution must match with the outer solution as 7 + 0. It is 
noted that the leading term of the outer solution is the solution given by Singh 
& Cowling which is summarized in tj 2 .  

A solution to the equations for the inner layer is sought in the form 

The solutions of equations (17) which satisfy the boundary conditions at  the 
wall are 8, = l+a(E)g, 

where u(g) is an arbitrary function of and is to be determined from the matching 
condition as ?j + GO. From (12) and the relationship between the various para- 
meters we see that the last term in (18) can be written as exp( - My) showing that 
the thickness of the inner boundary layer is O(M-l). It may be noted that for 
2M % 1 boundary layers of thickness O(M-l) are formed on the walls normal to 
the applied field in both Hartmann flow (see Cowling 1957), and the flow down 
a pipe of rectangular cross-section studied by Shercliff ( 1953). 

The arbitrary function u(g) in (18) may be determined by letting ij + co 
in Po and comparing with 9, in (5), as 7 --f 0. The first term matches automatically 
and for the second term to match we require 

u(g) = yB4E-3. (19) 
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No term in the outer solution as given by ( 5 )  matches with the constant term in 
11., and consequently we must introduce terms (A/A,)t BiFl(y), (A/A,)& B*<-&O,(q) 
into the outer solutions for @ and 8. It is readily shown that 81 = F; and that 
F; satisfies a second-order homogeneous equation with solution PI = - 1.  
This means that we merely add the constant - (h/A,)* B8 to the outer solution 
for q9 a t  this stage. This constant may be interpreted as the defect of volume 
flux up the plate due to the presence of the inner boundary layer. 

Turning again to the inner solution we see from (13), ( la),  (16) and (18) that 
8, and 3, satisfy 

- 

- 

a2'1 -- - cijj + +,by2 - biye-ag, 
ag2 

+8  - - ciy++6$2-age-aU-- a a *% 2 , - n u ) ,  h a3g1 a& - 

8, ag3 ay - A ,  

(20) Y 2 
_ _ _ _ _ _  

where a2 = A,/h and the dots denote differentiation with respect to c. Solutions 
of the above two equations satisfying 

are, respectively, 

- p 3 p .  3 7 a  where p = A;l(A-1), c ( ( )  = -ab+-u+--ci-- 
a3 4a2 a4 8a2A,' 

and the arbitrary function b(E) is determined by the matching condition. That 
the first two terms of (31) and ( 2 2 )  match with the third and fourth terms of the 
functions 8,( = Fh) and Fo can be seen by comparing (21) and ( 2 2 ) ,  as y-+ 00, 

with the expansion of F, for small 7 given in equation (8). The third term in (21) 
and the next three terms in ( 2 2 )  will match with terms arising from the next 
of the outer solutions for 8 and $, not yet considered. The remaining terms in 
(21) and ( 2 2 )  which are not exponentially small at infinity need not be considered 
at  this stage. 

Wemust now find the next term in the outer solution. If we substitute 
$ = Bg&Fo( 7) - (h/A,)) B% + pBzg"p'( 7) + . . - the expansions 

8 = 8,(7) + pBf-1e2(y) + . . . , (33) ,I 
into equations (10) and (1 l ) ,  we see that the equations satisfied by 8, and F2 

(24) may be written 

( 2 5 )  

O2 = Fi - F t ,  
F; + IF Ff + 3' F' - 1F" F - - 1F"Z. 

2 0 2  0 2  2 0 2 -  2 0  

The boundary conditions for Fz are 

and 
F ~ ( c Q )  = 0, 

FZ(0) = Fh(0) = 0, 

(26) 

(27) 
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the latter two determined from the matching condition as y + 0. The behaviour, 
as y + co, of the homogeneous equation associated with (35) is easily determined 
as F2 N k,y + k2 + k3e-&7, (88) 

where 2~ = Fo(co) and k,, k, and k3 are constants. Two independent solutions 
and $2 of the homogeneous part of ( 2 5 ) ,  both of which are bounded as 7 + 03, 

are 

Thus a third solution $z which is independent of and $2 will be algebraically 
large at infinity, and without loss of generality we may choose $3 such that 
c )~ (O)  = 1, &(0) = & ( O )  = 0. Using the method of variation of parameters a 
formal solution of (35 )  satisfying (27) may be obtained which shows that if F2 
is not to be algebraically large at  infinity then the integral condition 

must hold. From (39) and the fact that from equation (6) we may write 

F i =  y e ~ p [ - ~ / ~ F ~ d ~ ] ,  1 ' I  

the integral condition (30) becomes 

which is clearly not satisfied since the integral has the value - i y 2 .  This difficulty 
arises because the expansions (23) are incomplete and may be overcome by add- 
ing logarithmic terms. Thus to $ and 0 in (23) we add terms C2PB2[-t log 5F2,(y) 
and C2/3B~-'log[r3,,(y), respectively, where C2 is a constant which is to be 
determined. The equations satisfied by 0,, and F,, are 

8 2 0  = FLo,  (33) 

(33) F:o + +Fa F,", + FA FLo - $Fi F2, = 0, 

and the boundary conditions for F2,, are the same as for F2 given in (26) and (27). 
Consequently, since C2 is arbitrary as yet, we may take 

F2, = FO-vFA. (34) 

F: + $F,Fi + F'F' 0 2 - 1  1F"F 0 1F"2 0 - C 2 F" 0 F 20' (35) 

The equation (24) for i92 is unaltered but the equation for F2 is now 

2 = - 2 

Again the formal solution shows that if F2 is not to be algebraically large at 
infinity an integral condition analogous to (30) must be satisfied. From (31) and 
(34) this reduces to 

(36) 
C2/mqF,2dy = Y2 -, 

0 4 
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and a numerical integration gave C2 = 0.171. Although the logarithmic term in 
the expansion is given uniquely it will be observed that F2 cannot be so deter- 
mined since we can always add to P2 a constant multiple of #2 given in (29). 
This corresponds to a shift of origin, the arbitrariness arising because our solu- 
tion does not satisfy the boundary conditions at c = 0. In  this sense the solution 
is asymptotic. Similar difficulties, described by Stewartson (1957), arise in other 
boundary-layer problems. The solution is not considered beyond this stage. 

To complete the solution so far it remains to determine the arbitrary function 
b(E) occurring in (21) and (23). On account of the arbitrariness in P'. discussed 
above b(E) cannot be determined uniquely. Matching the outer solution for @ 
as 7 -+ 0 with ( 2 2 )  as ?j -+ co gives 

It may be noted, as indicated earlier, that for sufficiently large M the form of 
solution discussed here will hold everywhere except in the immediate neighbour- 
hood of the leading edge of the plate. 

The principle features of the flow, the mass flow up the plate, the skin friction, 
and heat transfer across the plate may be deduced from 

In conclusion we note that if h = 1, /3 = 0 and logarithmic terms do not occur 
at  this stage. 

4. Approximate method of solution 
Singh & Cowling in their paper give an approximate Pohlhausen solution based 

on an integrated form of the equations of motion. These are obtained by inte- 
grating (1) and ( 2 )  with respect to y from y = 0 to y = 6 to give, when wall and 
ambient fluid temperatures are constant, 

and 

The edge of the layer of fluid in motion is taken to be y = 6. The polynomial 
expressions assumed for u and 0 by Singh & Cowling when the magnetic drag is 
dominant are 

u = V ( x )  (1 -y/6)", 

B = ( 1  - y p p ,  

(43) 

(44) 
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where V ( x ) ,  6(x) are to be determined from (41) and (42). However, the expres- 
sion (43) for u does not satisfy the no-slip condition at the wall and indeed, 
in their .analysis, Singh & Cowling omit the viscous term in (41) altogether. 
In this way, as with their similarity solution, only the first terms in the expres- 
sions for ($)ll=m and (%?/3y),=, can be estimated. 

This solution may be improved and the viscous term in (41) included by choos- 
ing a more appropriate form for u, embodying the inner layer which has thickness 
O(J4-l). Thus we write 

and substituting for 0 and u in equations (41) and (42) from (44) and (45) we 
have the following two equations to solve for V(x )  and 6(x): 

u = V ( x )  (1 - y/6)” - V ( x )  e-&Iu, (45) 

V 
( n + l )  . a [V26{1+O[(M6)--l]}] = AK6-1M~V6+n(n+1)h - ,  (46) 

(47) 

(2n+ 1)dx 6 
d n(2n + 1) 
- [VS{l+ O[(M6)-1]}] = . ax 

Following Singh & Cowling we now introduce new variables x’, 8‘ and 6’ where 

and writing V’8’ = z, V’26’ = u,, (49) 

we see from (46), (47)  and (49) that w and z are related by the first-order equation 

where for large z, the case under consideration, it can be verified a posteriori 
that Rl = O(Z-~ ) .  The equation studied by Singh & Cowling is obtained from 
(50) by setting h and R, equal to zero. The relationship between x’ and z is, using 

where for large x ,  R2 = O(x-2). For large x we have, from equation (50), 

w - z + ( h -  l) /z,  (52) 

(53) and so, from (51). - - z -  (h -  l ) / z ,  

givirg x’ N ~22-((h-l)logz+C, (54) 

ax‘ 
dz 

wh: e the arbitrary constant C depends on initial conditions and is analogous 
to the indeterminacy discussed in the previous section. Inverting (54) we get 

x = (2x’)b+2-%(h- l )x’ -~ logx’+O(x’-~) ,  (55) 

and the constant C now only occurs in the O(x‘-a) term. The quantities V‘ and 
6’ are now given, from equations (49), (53) and (55) as 

V’ = 1 + O(x‘-l), 

6’ = (2x’): + 2 f ( h  - 1)  x‘-4 log x’ + O(x’-&). 
(66) 

( 5 7 )  
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In  terms of the variable [ defined in (9), the expressions necessary for calcu- 
lating the mass flow up the plate, the skin friction, and the heat transfer across 
the plate are, using equations ( 4 4 ) ,  ( 4 5 ) ,  ( 4 8 ) ,  ( 5 6 )  and (57), 

Singh & Cowling only considered the polynomial forms given by n = 2 ,  3 and we 
set out below the expressions (58) and (59) in these two cases. The numerical 

~ 

coefficients in equation ( 6 0 )  are easily deduced from (59): 
(i) 12. = 3 

($ )u=m = 1.491B@- B*+0.224/3B2[-Blog[+O(B%-*), 

Comparison with ( 3 8 )  and (39) shows that the Pohlhausen method gives results 
which are in reasonably good agreement with the exact values. 

The greatest value of the Pohlhausen method described here lies in its applica- 
tion to the situation when the plate and ambient fluid temperatures are not 
constant as, for purposes of comparison with the exact solution, we have assumed 
here. Singh & Cowling give the integral equations corresponding to ( 4 1 )  and (42) 
when these temperatures are arbitrarily assigned. 
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